Mark scheme - Compounds, Formulae and Equations

Question			Answer/Indicative content	Marks	Guidance
1	a	i	Effervescence OR fizzing OR bubbling OR gas produced AND The solid OR zinc carbonate would dissolve OR disappear \checkmark	1	ALLOW 'carbon dioxide produced' DO NOT ALLOW incorrectly named gas eg H_{2} Examiner's Comments Most candidates realised that effervescence and dissolving would be seen.
		ii	$\mathrm{ZnCO}_{3}+2 \mathrm{HCl} \diamond \mathrm{ZnCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \checkmark$	1	ALLOW multiples IGNORE state symbols Examiner's Comments Nearly all candidates were able to write the equation successfully - including those who had omitted effervescence in (i).
	b	i	$\mathrm{Ca}(\mathrm{OH})_{2} \mathrm{OR}$ Calcium hydroxide OR CaO OR Calcium oxide $\sqrt{ }$ 1	1	ALLOW Calcium carbonate $\mathrm{OR} \mathrm{CaCO}_{3}$ Examiner's Comments The unusual equation involving P4 molecules was answered well. Weaker candidates assumed that phosphorus was monatomic and consequentially lost credit.
		ii	$6 \mathrm{Ca}+\mathrm{P}_{4} \diamond 2 \mathrm{Ca}_{3} \mathrm{P}_{2} \checkmark$	1	ALLOW multiples IGNORE state symbols Examiner's Comments This potentially difficult dot-and-cross diagram of the ions present was done well by candidates.
		iii	$3 x\left[\begin{array}{c} x_{x} \\ x_{x} \operatorname{ca}_{x}^{x} \\ x x_{1}^{x} \end{array}\right]^{2+} \quad 2 x\left[\begin{array}{c} \bullet \bullet \\ x_{0}^{x} \\ \bullet P_{0}^{x} \end{array}\right]^{2}$ Ca with 8 (or no) electrons AND phosphide ion with dot-and-cross outermost octet \checkmark Three Ca ions AND two phosphide ions with correct charges \checkmark	2	For first mark: If 8 electrons are shown on the cation then the extra electron in the anion must match the symbol chosen for the electrons in the cation. IGNORE inner shells IGNORE circles ALLOW one mark if both electron arrangements and charges are correct but only one of each ion is drawn.

